TTIC 31150/CMSC 31150 Mathematical Toolkit (Spring 2023)

Avrim Blum and Ali Vakilian

Lecture 15: Properties of unit ball in high dimensions

Recap

- Chernoff-Hoeffding bounds
- Use in randomized algorithm for routing to minimize congestion.
- Randomized complexity classes **RP** and **BPP**, connections to **P/poly**.
- Probability over uncountably-infinite spaces (σ -algebra, R.V. as measurable function).
- Gaussian Random Variables
- Dimensionality Reduction and the Johnson-Lindenstrauss Lemma

Volume in High-Dimensions

Consider an object O ∈ ℝ^d. Shrink O by an ε-factor and call it O'.
O' = {(1 − ε)x | x ∈ O}

 $volume(O') = (1 - \epsilon)^d volume(O)$

Check it for cubes.

Consider the partition of O into infinitesimal cubes.

• By $1 - x \le e^{-x}$,

$$\operatorname{volume}(O') \le e^{-\epsilon d} \operatorname{volume}(O)$$

- By fixing ϵ , as $d \to \infty$, $\frac{\operatorname{volume}(O')}{\operatorname{volume}(O)}$ approaches to zero
- Most of the volume is in the annulus of width O(1/d) near boundary

Volume of the unit ball

- For fixed dimension d, the volume of sphere is a function of r an
- What about fixing *r* and increasing the dimension?

	Dimension	Volume of a ball of radius R
	0	1
	1	2R
n	2	$\pi R^2 pprox 3.142 imes R^2$
	3	${4\pi\over 3}R^3pprox 4.189 imes R^3$
	4	$rac{\pi^2}{2}R^4pprox 4.935 imes R^4$
	5	${8\pi^2\over 15}R^5pprox 5.264 imes R^5$
	6	$rac{\pi^3}{6}R^6pprox 5.168 imes R^6$
	7	$rac{16\pi^3}{105}R^7pprox 4.725 imes R^7$
	8	$rac{\pi^4}{24}R^8pprox 4.059 imes R^8$
	9	${32\pi^4\over 945}R^9pprox 3.299 imes R^9$
	10	$rac{\pi^5}{120} R^{10} pprox 2.550 imes R^{10}$
	11	$rac{64\pi^5}{10395}R^{11}pprox 1.884 imes R^{11}$

Volume of the unit ball

- For fixed dimension d, the volume of sphere is a function of r and grows as r^d
- What about fixing *r* and increasing the dimension?

$$V(d) = \int_{x_1=-1}^{x_1=1} \int_{x_2=-\sqrt{1-x_1^2}}^{x_2=\sqrt{1-x_1^2}} \cdots \int_{x_d=-\sqrt{1-x_1^2-x_2^2-\cdots+x_{d-1}^2}}^{x_d=\sqrt{1-x_1^2-x_2^2-\cdots+x_{d-1}^2}} dx_1 dx_2 \cdots dx_d$$

$$V(d) = \int_{S^d} \int_{r=0}^1 r^{d-1} d\Omega dr$$

Volume of the unit ball

- For fixed dimension d, the volume of sphere is a function of r and grows as r^d
- What about fixing *r* and increasing the dimension?

$$V(d) = \int_{x_1=-1}^{x_1=1} \int_{x_2=-\sqrt{1-x_1^2}}^{x_2=\sqrt{1-x_1^2}} \cdots \int_{x_d=-\sqrt{1-x_1^2-x_2^2-\cdots+x_{d-1}^2}}^{x_d=\sqrt{1-x_1^2-x_2^2-\cdots+x_{d-1}^2}} dx_1 dx_2 \cdots dx_d$$

$$V(d) = \int_{S^d} \int_{r=0}^1 r^{d-1} d\Omega dr$$
$$V(d) = \frac{2\pi^{\frac{d}{2}}}{d\Gamma(\frac{d}{2})}$$

Γ(x) : generalization of factorial for non-integers• Γ(x) = (x − 1)Γ(x − 1) $• Γ(2) = Γ(1) = 1, Γ(\frac{1}{2}) = √π$ • For integer x, Γ(x) = (x − 1)!2 π^{d/2}

$$\lim_{d\to\infty} V(d) = \lim_{d\to\infty} \frac{2\pi^{d/2}}{d\Gamma(d/2)} = 0$$

Volume of the unit ball near Equator

- We saw that most of the volume of a unit ball is around its boundary.
- Now, we show similar property for near equator.

Theorem 2.2 For $c \ge 1$ and $d \ge 3$, at least $1 - \frac{2}{c}e^{-c^2/2}$ fraction of the volume of the d-dimensional unit ball has $|x_1| \leq c/\sqrt{d-1}$. x_1

- *H*: upper hemisphere
- **A**: portion of unit ball with $x_1 \ge c/\sqrt{d-1}$ volume(A) = $\int_{C/\sqrt{d-1}}^{1} (1 - x_1^2)^{\frac{d-1}{2}} V(d-1) dx_1$

$$\text{volume}(A) \le \int_{c/\sqrt{d-1}}^{\infty} \frac{x_1\sqrt{d-1}}{c} e^{-\frac{d-1}{2}x_1^2} V(d-1) dx_1 = V(d-1) \frac{\sqrt{d-1}}{c} \int_{c/\sqrt{d-1}}^{\infty} x_1 e^{-\frac{d-1}{2}x_1^2} dx_1$$

 $=\frac{v(u-1)}{c\sqrt{d-1}}e^{-\frac{c}{2}}$

- $1 x \le e^{-x}$
- $\frac{x_1\sqrt{d-1}}{c} \ge 1$ for every $x_1 \ge c/\sqrt{d-1}$

Volume of the unit ball near Equator

- We saw that most of the volume of a unit ball is around its boundary.
- Now, we show similar property for near equator.

Theorem 2.2 For $c \ge 1$ and $d \ge 3$, at least $1 - \frac{2}{c}e^{-c^2/2}$ fraction of the volume of the d-dimensional unit ball has $|x_1| \le c/\sqrt{d-1}$.

- *H*: upper hemisphere
- **A**: portion of unit ball with $x_1 \ge c/\sqrt{d-1}$

Lowerboud on volume of **H**

• Cylinder of height $1/\sqrt{d-1}$ and radius $\sqrt{1-\frac{1}{d-1}}$

•
$$V(d-1)\left(1-\frac{1}{d-1}\right)^{\frac{d-1}{2}} \frac{1}{\sqrt{d-1}} \xrightarrow{\text{by } (1-x)^a \ge 1-ax} \frac{V(d-1)^{\frac{d-1}{2}}}{2\sqrt{d-1}}$$

Volume of the unit ball near Equator

- We saw that most of the volume of a unit ball is around its boundary.
- Now, we show similar property for near equator.

Theorem 2.2 For $c \ge 1$ and $d \ge 3$, at least $1 - \frac{2}{c}e^{-c^2/2}$ fraction of the volume of the d-dimensional unit ball has $|x_1| \le c/\sqrt{d-1}$.

- *H*: upper hemisphere
- **A**: portion of unit ball with $x_1 \ge c/\sqrt{d-1}$

• volume(A)
$$\leq \frac{V(d-1)}{c\sqrt{d-1}}e^{-c^2/2}$$

• volume(H) $\geq \frac{V(d-1)}{2\sqrt{d-1}}$

$$\frac{\operatorname{volume}(A)}{\operatorname{volume}(H)} \le \frac{2}{c} e^{-c^2/2}$$

 x_1

A

Revisiting near orthogonality

- If we draw two points at random from the unit ball, w.h.p., they will be nearly orthogonal.
 - W.h.p., both will be close to the surface,
 - W.h.p., both will have length 1 O(1/d)
 - \Rightarrow w.h.p., their inner product is $\pm O(1/\sqrt{d})$

Theorem 2.4 Consider drawing *n* points $\mathbf{x}_1, \dots, \mathbf{x}_n$ at random from the unit ball. With probability 1 - O(1/n),

- $|\mathbf{x}_i| \geq 1 \frac{2\ln n}{d}$ for all *i*, and
- $|\mathbf{x}_i \cdot \mathbf{x}_j| \leq \frac{\sqrt{6 \ln n}}{\sqrt{d-1}}$ for all $i \neq j$.

How does a typical random vector on the sphere look like?

Revisiting near orthogonality

Theorem 2.4 Consider drawing *n* points $\mathbf{x}_1, \dots, \mathbf{x}_n$ at random from the unit ball. With probability 1 - O(1/n),

- $|\mathbf{x}_i| \geq 1 \frac{2\ln n}{d}$ for all *i*, and
- $|\mathbf{x}_i \cdot \mathbf{x}_j| \leq \frac{\sqrt{6 \ln n}}{\sqrt{d-1}}$ for all $i \neq j$.
- We saw that for a vector **x** sampled from the unit ball $\Pr[|\mathbf{x}| < 1 \epsilon] \le e^{-\epsilon d}$ • Setting $\epsilon = \frac{2 \ln n}{d}$, with probability 1 - 1/n, all vectors $\mathbf{x}_1, \dots, \mathbf{x}_n$ have length at least $1 - \frac{2 \ln n}{d}$
- For any pair *i*, *j*: consider \mathbf{x}_i as "north", then projection of \mathbf{x}_j onto the north direction is more than $\frac{c}{\sqrt{d-1}}$ with probability at most $\frac{2}{c}e^{-c^2/2}$

• Setting $c = \sqrt{6 \ln n}$, with probability 1 - 1/n, all inner products are at most $\frac{\sqrt{6 \ln n}}{\sqrt{d-1}}$

Generating points uniformly at random from a ball

- First, consider the case of two-dimensional space:
 - Sample from $[-1,1]^2$ and project onto the ball
 - Sample from $[-1,1]^2$ and reject those outside 1.
- Higher dimensions?
 - Volume of the unit ball approaches to zero.

Solution: generate a point each of whose coordinates is an independent Gaussian variable. The probability density of **x** is $p(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{d}{2}}}e^{-\frac{x_1^2+x_2^2+\cdots+x_d^2}{2}}$

- Spherically symmetric
- Normalizing the vector $\mathbf{x} = (x_1, \cdots, x_d)$ to a unit vector

For generating from the entire unit ball:

• Instead of normalizing,
$$\rho \frac{\mathbf{x}}{\|\mathbf{x}\|}$$

• density of
$$\rho$$
 is proportional to r^{d-1}

•
$$\rho(r) = dr^{d-1}$$