TTIC 31150/CMSC 31150 Mathematical Toolkit (Spring 2023)

Avrim Blum and Ali Vakilian

Lecture 15: Properties of unit ball in high dimensions

Recap

- Chernoff-Hoeffding bounds
- Use in randomized algorithm for routing to minimize congestion.
- Randomized complexity classes RP and BPP, connections to P/poly.
- Probability over uncountably-infinite spaces (σ-algebra, R.V. as measurable function).
- Gaussian Random Variables
- Dimensionality Reduction and the Johnson-Lindenstrauss Lemma

Volume in High-Dimensions

- Consider an object $O \in \mathbb{R}^{d}$. Shrink O by an ϵ-factor and call it O^{\prime}.
$\circ O^{\prime}=\{(1-\epsilon) x \mid x \in O\}$

$$
\operatorname{volume}\left(O^{\prime}\right)=(1-\epsilon)^{d} \text { volume }(O)
$$

Annulus of width $\frac{1}{d}$
$>$ Check it for cubes.
$>$ Consider the partition of O into infinitesimal cubes.

- By $1-x \leq e^{-x}$,

$$
\text { volume }\left(O^{\prime}\right) \leq e^{-\epsilon d} \text { volume }(O)
$$

- By fixing ϵ, as $d \rightarrow \infty, \frac{\operatorname{volume}\left(O^{\prime}\right)}{\operatorname{volume}(O)}$ approaches to zero
- Most of the volume is in the annulus of width $O(1 / d)$ near boundary

Volume of the unit ball

Dimension	Volume of a ball of radius \boldsymbol{R}
0	1
1	$2 R$

- For fixed dimension d, the volume of sphere is a function of r anc ${ }_{2}$

$$
\pi R^{2} \approx 3.142 \times R^{2}
$$

- What about fixing r and increasing the dimension?

2	$\pi R^{2} \approx 3.142 \times R^{2}$
3	$\frac{4 \pi}{3} R^{3} \approx 4.189 \times R^{3}$
4	$\frac{\pi^{2}}{2} R^{4} \approx 4.935 \times R^{4}$
5	$\frac{8 \pi^{2}}{15} R^{5} \approx 5.264 \times R^{5}$
6	$\frac{\pi^{3}}{6} R^{6} \approx 5.168 \times R^{6}$
7	$\frac{16 \pi^{3}}{105} R^{7} \approx 4.725 \times R^{7}$
8	$\frac{\pi^{4}}{24} R^{8} \approx 4.059 \times R^{8}$
9	$\frac{32 \pi^{4}}{945} R^{9} \approx 3.299 \times R^{9}$
10	$\frac{\pi^{5}}{120} R^{10} \approx 2.550 \times R^{10}$
11	$\frac{64 \pi^{5}}{10395} R^{11} \approx 1.884 \times R^{11}$

Volume of the unit ball

- For fixed dimension d, the volume of sphere is a function of r and grows as r^{d}
- What about fixing r and increasing the dimension?

$$
V(d)=\int_{x_{1}=-1}^{x_{1}=1} \int_{x_{2}=-\sqrt{1-x_{1}^{2}}}^{x_{2}=\sqrt{1-x_{1}^{2}}} \cdots \int_{x_{d}=-\sqrt{1-x_{1}^{2}-x_{2}^{2}-\cdots x_{d-1}^{2}}}^{x_{d}=\sqrt{1-x_{1}^{2}-x_{2}^{2}-\cdots x_{d-1}^{2}}} d x_{1} d x_{2} \cdots d x_{d}
$$

$$
V(d)=\int_{S^{d}} \int_{r=0}^{1} r^{d-1} d \Omega d r
$$

Volume of the unit ball

- For fixed dimension d, the volume of sphere is a function of r and grows as r^{d}
- What about fixing r and increasing the dimension?

$$
\begin{aligned}
& V(d)=\int_{x_{1}=-1}^{x_{1}=1} \int_{x_{2}=-\sqrt{1-x_{1}^{2}}}^{x_{2}=\sqrt{1-x_{1}^{2}}} \cdots \int_{x_{d}=-\sqrt{1-x_{1}^{2}-x_{2}^{2}-\cdots x_{d-1}^{2}}}^{x_{d}=\sqrt{1-x_{1}^{2}-x_{2}^{2}-\cdots x_{d-1}^{2}}} d x_{1} d x_{2} \cdots d x_{d} \\
& V(d)=\int_{S^{d}} \int_{r=0}^{1} r^{d-1} d \Omega d r \\
& V\left(\begin{array}{l}
\Gamma(\boldsymbol{x}): \text { generalization of factorial for non-integers } \\
\cdot \Gamma(x)=(x-1) \Gamma(x-1) \\
\\
V(d)=\frac{2 \pi^{\frac{d}{2}}}{d \Gamma\left(\frac{d}{2}\right)} \\
\\
\end{array} \begin{array}{l}
\text { •For integer } x, \Gamma(x)=(x-1)! \\
\lim _{d \rightarrow \infty} V(d)=\lim _{d \rightarrow \infty} \frac{2 \pi^{d / 2}}{d \Gamma(d / 2)}=0
\end{array}\right.
\end{aligned}
$$

Volume of the unit ball near Equator

- We saw that most of the volume of a unit ball is around its boundary.
- Now, we show similar property for near equator.

Theorem 2.2 For $c \geq 1$ and $d \geq 3$, at least $1-\frac{2}{c} e^{-c^{2} / 2}$ fraction of the volume of the d-dimensional unit ball has $\left|x_{1}\right| \leq c / \sqrt{d-1}$.

- \boldsymbol{H} : upper hemisphere
- A : portion of unit ball with $x_{1} \geq c / \sqrt{d-1}$
$\operatorname{volume}(A)=\int_{c / \sqrt{d-1}}^{1}\left(1-x_{1}^{2}\right)^{\frac{d-1}{2}} V(d-1) d x_{1}$

$\operatorname{volume}(A) \leq \int_{c / \sqrt{d-1}}^{\infty} \frac{x_{1} \sqrt{d-1}}{c} e^{-\frac{d-1}{2} x_{1}^{2}} V(d-1) d x_{1}=V(d-1) \frac{\sqrt{d-1}}{c} \int_{c / \sqrt{d-1}}^{\infty} x_{1} e^{-\frac{d-1}{2} x_{1}^{2}} d x_{1}$
- $1-x \leq e^{-x}$
- $\frac{x_{1} \sqrt{d-1}}{c} \geq 1$ for every $x_{1} \geq c / \sqrt{d-1}$

$$
=\frac{V(d-1)}{c \sqrt{d-1}} e^{-\frac{c^{2}}{2}}
$$

Volume of the unit ball near Equator

- We saw that most of the volume of a unit ball is around its boundary.
- Now, we show similar property for near equator.

Theorem 2.2 For $c \geq 1$ and $d \geq 3$, at least $1-\frac{2}{c} e^{-c^{2} / 2}$ fraction of the volume of the d-dimensional unit ball has $\left|x_{1}\right| \leq c / \sqrt{d-1}$.

- \boldsymbol{H} : upper hemisphere
- A : portion of unit ball with $x_{1} \geq c / \sqrt{d-1}$

Lowerboud on volume of \boldsymbol{H}

- Cylinder of height $1 / \sqrt{d-1}$ and radius $\sqrt{1-\frac{1}{d-1}}$
- $V(d-1)\left(1-\frac{1}{d-1}\right)^{\frac{d-1}{2}} \frac{1}{\sqrt{d-1}} \xrightarrow{\text { by }(1-x)^{a} \geq 1-a x} \frac{V(d-1)}{2 \sqrt{d-1}}$

Volume of the unit ball near Equator

- We saw that most of the volume of a unit ball is around its boundary.
- Now, we show similar property for near equator.

Theorem 2.2 For $c \geq 1$ and $d \geq 3$, at least $1-\frac{2}{c} e^{-c^{2} / 2}$ fraction of the volume of the d-dimensional unit ball has $\left|x_{1}\right| \leq c / \sqrt{d-1}$.

- \boldsymbol{H} : upper hemisphere
- A : portion of unit ball with $x_{1} \geq c / \sqrt{d-1}$
- $\operatorname{volume}(A) \leq \frac{V(d-1)}{c \sqrt{d-1}} e^{-c^{2} / 2}$
- volume $(H) \geq \frac{V(d-1)}{2 \sqrt{d-1}}$

$$
\frac{\text { volume }(A)}{\text { volume }(H)} \leq \frac{2}{c} e^{-c^{2} / 2}
$$

Another proof that the volume of the ball approaches to zero as $d \rightarrow \infty$?

Revisiting near orthogonality

- If we draw two points at random from the unit ball, w.h.p., they will be nearly orthogonal.
- W.h.p., both will be close to the surface,
- W.h.p., both will have length $1-O(1 / d)$
- \Rightarrow w.h.p., their inner product is $\pm O(1 / \sqrt{d})$

Theorem 2.4 Consider drawing n points $\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}$ at random from the unit ball. With probability $1-O(1 / n)$,

- $\left|\mathbf{x}_{i}\right| \geq 1-\frac{2 \ln n}{d}$ for all i, and
- $\left|\mathbf{x}_{i} \cdot \mathbf{x}_{j}\right| \leq \frac{\sqrt{6 \ln n}}{\sqrt{d-1}}$ for all $i \neq j$.

How does a typical random vector on the sphere look like?

Revisiting near orthogonality

Theorem 2.4 Consider drawing n points $\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}$ at random from the unit ball. With probability $1-O(1 / n)$,

- $\left|\mathbf{x}_{i}\right| \geq 1-\frac{2 \ln n}{d}$ for all i, and
- $\left|\mathbf{x}_{i} \cdot \mathbf{x}_{j}\right| \leq \frac{\sqrt{6 \ln n}}{\sqrt{d-1}}$ for all $i \neq j$.
- We saw that for a vector \mathbf{x} sampled from the unit ball $\operatorname{Pr}[|\mathbf{x}|<1-\epsilon] \leq e^{-\epsilon d}$
- Setting $\epsilon=\frac{2 \ln n}{d}$, with probability $1-1 / n$, all vectors $\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}$ have length at least $1-\frac{2 \ln n}{d}$
- For any pair i, j : consider \mathbf{x}_{i} as "north", then projection of \mathbf{x}_{j} onto the north direction is more than $\frac{c}{\sqrt{d-1}}$ with probability at most $\frac{2}{c} e^{-c^{2} / 2}$
- Setting $c=\sqrt{6 \ln n}$, with probability $1-1 / n$, all inner products are at most $\frac{\sqrt{6 \ln n}}{\sqrt{d-1}}$

Generating points uniformly at random from a ball

- First, consider the case of two-dimensional space:
- Sample from $[-1,1]^{2}$ and project onto the ball

For generating from the entire unit ball:

- Instead of normalizing, $\rho \frac{\mathbf{x}}{\|\mathbf{x}\|}$
- density of ρ is proportional to r^{d-1}
- $\rho(r)=d r^{d-1}$
- Higher dimensions?
- Volume of the unit ball approaches to zero.

Solution: generate a point each of whose coordinates is an independent Gaussian variable. The probability density of \mathbf{x} is $p(\mathbf{x})=\frac{1}{(2 \pi)^{\frac{d}{2}}} e^{-\frac{x_{1}^{2}+x_{2}^{2}+\cdots+x_{d}^{2}}{2}}$

- Spherically symmetric
- Normalizing the vector $\mathbf{x}=\left(x_{1}, \cdots, x_{d}\right)$ to a unit vector

