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Lecture 15: Properties of unit ball in high dimensions 
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Recap

• Chernoff-Hoeffding bounds

• Use in randomized algorithm for routing to minimize congestion.

• Randomized complexity classes RP and BPP, connections to P/poly.

• Probability over uncountably-infinite spaces (𝜎𝜎-algebra, R.V. as measurable function). 

• Gaussian Random Variables

• Dimensionality Reduction and the Johnson-Lindenstrauss Lemma 



Volume in High-Dimensions
• Consider an object 𝑂𝑂 ∈ ℝ𝑑𝑑. Shrink 𝑂𝑂 by an 𝜖𝜖-factor and call it 𝑂𝑂𝑂.

o 𝑂𝑂′ = (1 − 𝜖𝜖)𝑥𝑥 𝑥𝑥 ∈ 𝑂𝑂}

volume 𝑂𝑂′ = 1 − 𝜖𝜖 𝑑𝑑 volume(𝑂𝑂)

 Check it for cubes.

 Consider the partition of 𝑂𝑂 into infinitesimal cubes.

• By fixing 𝜖𝜖, as 𝑑𝑑 → ∞, volume 𝑂𝑂′

volume 𝑂𝑂 approaches to zero
• Most of the volume is in the annulus of width 𝑂𝑂(1/𝑑𝑑) near boundary

• By 1 − 𝑥𝑥 ≤ 𝑒𝑒−𝑥𝑥,
volume 𝑂𝑂′ ≤ 𝑒𝑒−𝜖𝜖𝑑𝑑 volume(𝑂𝑂)

1

Annulus of width 1
𝑑𝑑



Volume of the unit ball 
• For fixed dimension 𝑑𝑑, the volume of sphere is a function of 𝑟𝑟 and grows as 𝑟𝑟𝑑𝑑

• What about fixing 𝑟𝑟 and increasing the dimension? 
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Volume of the unit ball 
• For fixed dimension 𝑑𝑑, the volume of sphere is a function of 𝑟𝑟 and grows as 𝑟𝑟𝑑𝑑

• What about fixing 𝑟𝑟 and increasing the dimension? 

𝑉𝑉 𝑑𝑑 =
2𝜋𝜋

𝑑𝑑
2

𝑑𝑑 𝚪𝚪(𝑑𝑑2)

𝚪𝚪(𝒙𝒙) : generalization of factorial for non-integers
• Γ 𝑥𝑥 = 𝑥𝑥 − 1 Γ(𝑥𝑥 − 1)

• Γ 2 = Γ 1 = 1, Γ 1
2

= 𝜋𝜋

• For integer 𝑥𝑥, Γ 𝑥𝑥 = 𝑥𝑥 − 1 !

lim
𝑑𝑑→∞

𝑉𝑉(𝑑𝑑) = lim
𝑑𝑑→∞

2 𝜋𝜋𝑑𝑑/2

𝑑𝑑 Γ(𝑑𝑑/2)
= 0



Volume of the unit ball near Equator
• We saw that most of the volume of a unit ball is around its boundary.
• Now, we show similar property for near equator.

• 𝑯𝑯: upper hemisphere

• 𝑨𝑨: portion of unit ball with 𝑥𝑥1 ≥ 𝑐𝑐/ 𝑑𝑑 − 1

• 1 − 𝑥𝑥 ≤ 𝑒𝑒−𝑥𝑥

• 𝑥𝑥1 𝑑𝑑−1
𝑐𝑐 ≥ 1 for every 𝑥𝑥1 ≥ 𝑐𝑐/ 𝑑𝑑 − 1



Volume of the unit ball near Equator
• We saw that most of the volume of a unit ball is around its boundary.
• Now, we show similar property for near equator.

• 𝑯𝑯: upper hemisphere

• 𝑨𝑨: portion of unit ball with 𝑥𝑥1 ≥ 𝑐𝑐/ 𝑑𝑑 − 1

Lowerboud on volume of 𝑯𝑯

• Cylinder of height 1/ 𝑑𝑑 − 1 and radius 1 − 1
𝑑𝑑−1

• 𝑉𝑉 𝑑𝑑 − 1 1 − 1
𝑑𝑑−1

𝑑𝑑−1
2 1

𝑑𝑑−1

𝐛𝐛𝐲𝐲 1−𝑥𝑥 𝑎𝑎 ≥ 1−𝑎𝑎𝑥𝑥 𝑉𝑉(𝑑𝑑−1)
2 𝑑𝑑−1



Volume of the unit ball near Equator
• We saw that most of the volume of a unit ball is around its boundary.
• Now, we show similar property for near equator.

• 𝑯𝑯: upper hemisphere

• 𝑨𝑨: portion of unit ball with 𝑥𝑥1 ≥ 𝑐𝑐/ 𝑑𝑑 − 1

• volume 𝐴𝐴 ≤ 𝑉𝑉 𝑑𝑑−1
𝑐𝑐 𝑑𝑑−1

𝑒𝑒−𝑐𝑐2/2

• volume(𝐻𝐻) ≥ 𝑉𝑉(𝑑𝑑−1)
2 𝑑𝑑−1

volume(𝐴𝐴)
volume(𝐻𝐻)

≤
2
𝑐𝑐
𝑒𝑒−𝑐𝑐2/2

Another proof that the volume of the 
ball approaches to zero as 𝑑𝑑 → ∞? 



Revisiting near orthogonality
• If we draw two points at random from the unit ball, w.h.p., they will be nearly 

orthogonal. 

• W.h.p., both will be close to the surface,

• W.h.p., both will have length 1 − 𝑂𝑂(1/𝑑𝑑)

• ⟹ w.h.p., their inner product is ±𝑂𝑂(1/ 𝑑𝑑)

How does a typical random vector on 
the sphere look like?



Revisiting near orthogonality

• We saw that for a vector 𝐱𝐱 sampled from the unit ball Pr 𝐱𝐱 < 1 − 𝜖𝜖 ≤ 𝑒𝑒−𝜖𝜖𝑑𝑑

• Setting 𝜖𝜖 = 2 ln 𝑛𝑛
𝑑𝑑

, with probability 1 − 1/𝑛𝑛, all vectors 𝐱𝐱1,⋯ , 𝐱𝐱𝑛𝑛 have length at least 1 − 2 ln 𝑛𝑛
𝑑𝑑

• For any pair 𝑖𝑖, 𝑗𝑗: consider 𝐱𝐱𝑖𝑖 as “north”, then projection of 𝐱𝐱𝑗𝑗 onto the north direction 
is more than 𝑐𝑐

𝑑𝑑−1
with probability at most 2

𝑐𝑐
𝑒𝑒−𝑐𝑐2/2

• Setting 𝑐𝑐 = 6 ln𝑛𝑛, with probability 1 − 1/𝑛𝑛, all inner products are at most 6 ln 𝑛𝑛
𝑑𝑑−1



• Higher dimensions?
• Volume of the unit ball approaches to zero.

Solution: generate a point each of whose coordinates is an independent Gaussian 

variable. The probability density of 𝐱𝐱 is                                                         

• Spherically symmetric

• Normalizing the vector 𝐱𝐱 = (𝑥𝑥1,⋯ , 𝑥𝑥𝑑𝑑) to a unit vector

Generating points uniformly at random from a ball

• First, consider the case of two-dimensional space:

• Sample from −1,1 2 and project onto the ball

• Sample from −1,1 2 and reject those outside the ball

For generating from the entire unit ball:

• Instead of normalizing, 𝜌𝜌 𝐱𝐱
𝐱𝐱

• density of 𝜌𝜌 is proportional to 𝑟𝑟𝑑𝑑−1

• 𝜌𝜌 𝑟𝑟 = 𝑑𝑑𝑟𝑟𝑑𝑑−1
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